The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Methodological standardization for a multi-institutional in vivo trial of localized 31P MR spectroscopy in human cancer research. In vitro and normal volunteer studies.
Publication Type
Review
Authors
Arias-Mendoza F, Zakian K, Schwartz A, Howe F, Koutcher J, Leach M, Griffiths J, Heerschap A, Glickson J, Nelson S, Evelhoch J, Charles H, Brown T
Journal
NMR Biomed
Volume
17
Issue
6
Pagination
382-91
Date Published
10/01/2004
ISSN
0952-3480
Keywords
Biomarkers, Tumor, Magnetic Resonance Spectroscopy, Multicenter Studies as Topic, Muscle, Skeletal, Neoplasms
Abstract
A multi-institutional group has been created to demonstrate the utility of in vivo 31P magnetic resonance spectroscopy (31P-MRS) to study human cancers in vivo. This review is concerned with the novel problems concerning quality control in this large multinational trial of 31P MRS. Our results show that the careful and systematic performance of the quality control tests depicted here (standardized dual 1H/31P tuned radiofrequency probe, quality control procedures, routine use of 1H irradiation while acquiring 31P MR signals) has ensured comparable results between the different institutions. In studies made in vitro, the root-mean-square error was 3.6 %, and in muscle of healthy volunteers in vivo the coefficients of variance for the ratios phosphocreatine/nucleotide-triphosphates, phosphocreatine/noise and nucleotide-triphosphate/noise were 12.2, 7.0 and 10.8 %, respectively. The standardization of the acquisition protocol for in vivo-localized 31P MR spectroscopy across the different institutions has resulted in comparable in vivo data, decreasing the possible problems related to a research study carried out under a multi-institutional setting.