The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
We have used the Stanford Electron Gamma Shower (EGS) Monte Carlo code to compute photon spectra from an AECL Theratron 780 cobalt-60 unit. Particular attention has been paid to the careful modeling of the geometry and material construction of the cobalt-60 source capsule, source housing, and collimator assembly. From our simulation, we conclude that the observed increase in output of the machine with increasing field size is caused by scattered photons from the primary definer and the adjustable collimator. We have also used the generated photon spectra as input to a pencil beam model to calculate the tissue-air ratios in water and compared it to a model which uses a monochromatic photon energy of 1.25 MeV.