The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The relationship of tibial bone perfusion to pain in knee osteoarthritis.
Publication Type
Academic Article
Authors
Seah S, Wheaton D, Li L, Dyke J, Talmo C, Harvey W, Hunter D
Journal
Osteoarthritis Cartilage
Volume
20
Issue
12
Pagination
1527-33
Date Published
09/07/2012
ISSN
1522-9653
Keywords
Arthralgia, Bone Marrow, Knee Joint, Magnetic Resonance Imaging, Osteoarthritis, Knee, Tibia
Abstract
OBJECTIVE: To confirm altered perfusion within tibial bone marrow lesions (BMLs) and improve our understanding on the relationship between BMLs and pain in knee osteoarthritis (OA). METHODS: Participants with moderate to severe knee OA were recruited and pain was assessed using the pain subscale of the Western Ontario and McMaster Universities Arthritis Index (WOMAC). Subchondral tibial BMLs were identified and graded on magnetic resonance imaging (MRI) proton density-weighted (PDW) fat suppressed images. A pharmacokinetic model was used to analyze perfusion parameters on dynamic contrast enhanced (DCE) MRI which represent transfer rates in and out of the BMLs. The relation between perfusion and pain was evaluated using multivariable linear regression after adjustment for BML grade, age, gender and body mass index (BMI). RESULTS: There were 37 participants (mean age 64.9 years, range 46-86) with radiographic Kellgren and Lawrence grades of 3 and 4 in the study knee; 75.6% had BMLs that were classified grades 1 and 2. The mean WOMAC pain score was 10.3 (0-20 scale). There was a significant correlation between BML K(el) (rate of contrast elimination) and BML grade (P = 0.001 univariate, P = 0.002 multivariate analyses), although we did not demonstrate any significant multivariate association between BML perfusion and pain. We also found an inverse relationship between pain at sleep and BML grade (P < 0.05). CONCLUSIONS: The absence of any significant association between bone perfusion and pain implies that the relationship of tibial BMLs to pain in OA is still incompletely understood. BMLs are just one component of the whole knee joint and are formed from various causes, all of which interact and collectively contribute to the genesis of pain in OA.