The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
H19, a paternally imprinted gene, is postulated to have regulatory functions in normal development and oncogenesis. Loss of imprinting (LOI) of H19 is observed in human malignancies, including lung cancer. Microarray assessment of gene expression patterns in airway epithelium of healthy 20 pack-year smokers versus nonsmokers revealed that smokers have dramatically elevated H19 RNA levels without alteration of expression of other imprinted genes. Interestingly, the up-regulation of H19 was not attributable to LOI, i.e., expression of H19 in smokers was monoallelic. These observations suggest that cigarette smoking initially induces up-regulation of the active H19 allele and that there is likely progression to LOI as the burden of smoking increases and as the epithelium undergoes transition from normal to neoplastic. Overexpression and eventual LOI of H19 may represent early markers in the progression of airway epithelium toward lung cancer.