About Us
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
Publication Type | Academic Article |
Authors | Rafii S, Dias S, Meeus S, Hattori K, Ramachandran R, Feuerback F, Worgall S, Hackett N, Crystal R |
Journal | Circ Res |
Volume | 88 |
Issue | 9 |
Pagination | 903-10 |
Date Published | 05/11/2001 |
ISSN | 1524-4571 |
Keywords | Adenovirus E1 Proteins, Adenovirus E4 Proteins, Endothelium, Vascular, Leukocytes, Proteins |
Abstract | Intravascular introduction of replication-deficient adenoviral vectors (Advectors) provides an ideal model of delivery of transgenes for the treatment of various vascular abnormalities. On the basis of the knowledge that Advectors can induce inflammatory responses after intravascular administration, we speculated that cellular activation by Advector infection could directly modulate the endothelial cell (EC) adhesion molecule/chemokine expression repertoire. Infection of human umbilical vein ECs or bone marrow microvascular ECs with an E1(-)E4(+) Advector resulted in the upregulation of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and CD34, but not E-selectin, P-selectin, CD36, CD13, CD44, HLA-DR or PECAM. Upregulation of ICAM-1, VCAM-1, and CD34 was apparent 12 hours after infection and persisted for weeks after infection. Selective induction of adhesion molecules was mediated by the presence of the E4 gene in the Advector, because infection of ECs with an E1(-)E4(-) Advector had no effect on adhesion molecule expression. ECs infected with E1(-)E4(+) Advector, but not those infected with E1(-)E4(-) Advector, supported the adhesion of leukocytes. Monoclonal antibodies to ICAM-1 and VCAM-1 inhibited adhesion of leukocytes to E1(-)E4(+)-infected ECS: Infection of the ECs with E1(-)E4(+) Advector, but not E1(-)E4(-) Advector, resulted in downregulation of expression of chemocytokines, including interleukin-8, MCP-1, RANTES, and GM-CSF. Nonetheless, a large number of leukocytes migrated through ECs infected with E1(-)E4(+), but not those infected with E1(-)E4(l-), in response to exogenous chemokines. These results demonstrate that infection of ECs with E1(-)E4(+) Advectors, but not E1(-)E4(-) Advectors, may directly augment inflammatory responses by upregulating expression of adhesion molecules and enhancing migration through Advector-infected ECs and suggest that E1(-)E4(-) Advectors may be a better choice for gene-transfer strategies directed to the ECS: |
DOI | 10.1161/hh0901.089884 |
PubMed ID | 11348999 |