About Us
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
Publication Type | Academic Article |
Authors | Harvey B, Maroni J, O'Donoghue K, Chu K, Muscat J, Pippo A, Wright C, Hollmann C, Wisnivesky J, Kessler P, Rasmussen H, Rosengart T, Crystal R |
Journal | Hum Gene Ther |
Volume | 13 |
Issue | 1 |
Pagination | 15-63 |
Date Published | 01/01/2002 |
ISSN | 1043-0342 |
Keywords | Adenoviruses, Human, Colonic Neoplasms, Coronary Artery Disease, Cystic Fibrosis, Genetic Vectors, Liver Neoplasms, Peripheral Vascular Diseases |
Abstract | To help define the safety profile of the use of adenovirus (Ad) gene transfer vectors in humans, this report summarizes our experience since April 1993 of the local administration of E1(-)/E3(-) Ad vectors to humans using low (<10(9) particle units) or intermediate (10(9)-10(11) particle units) doses. Included in the study are 90 individuals and 12 controls, with diverse comorbid conditions, including cystic fibrosis, colon cancer metastatic to liver, severe coronary artery disease, and peripheral vascular disease, as well as normals. These individuals received 140 different administrations of vector, with up to seven administrations to a single individual. The vectors used include three different transgenes (human cystic fibrosis transmembrane conductance regulator cDNA, E. coli cytosine deaminase gene, and the human vascular endothelial growth factor 121 cDNA) administered by six different routes (nasal epithelium, bronchial epithelium, percutaneous to solid tumor, intradermal, epicardial injection of the myocardium, and skeletal muscle). The total population was followed for 130.4 patient-years. The study assesses adverse events, common laboratory tests, and long-term follow-up, including incidence of death or development of malignancy. The total group incidence of major adverse events linked to an Ad vector was 0.7%. There were no deaths attributable to the Ad vectors per se, and the incidence of malignancy was within that expected for the population. Overall, the observations are consistent with the concept that local administration of low and intermediate doses of Ad vectors appears to be well tolerated. |
DOI | 10.1089/10430340152712638 |
PubMed ID | 11779412 |