The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration.
Publication Type
Academic Article
Authors
Worgall S, Wolff G, Falck-Pedersen E, Crystal R
Journal
Hum Gene Ther
Volume
8
Issue
1
Pagination
37-44
Date Published
01/01/1997
ISSN
1043-0342
Keywords
Adenoviridae, Genetic Vectors, Immunity
Abstract
To evaluate the contribution of the innate immune component of host defense in clearing the genome of adenovirus (Ad) vectors following in vivo administration, the Ad vectors AdCMV.beta gal (expressing beta-galactosidase) or AdCMV.Null (expressing no gene) were administered intravenously to immunocompetent or immunodeficient mice, and the amount of vector genome was quantified in the liver. Strikingly, 90% of vector DNA was eliminated within 24 hr. There was no increase in vector DNA in other tissues over this period, suggesting that rapid clearance of vector genome resulted from local degradation. After 24 hr, vector elimination was slow, with only 9% of the initial amount of vector genome cleared over the subsequent 3 weeks. Importantly, early phase (0-24 hr) elimination of vector DNA was independent of the transgene and similar in immunocompetent and nude animals. These observations suggest two phases of Ad vector elimination: a previously recognized late, immune-related elimination, and the early, innate immune elimination described in the present study. The early phase of vector loss is, by far, the dominant mechanism, an observation that has implications in developing strategies to maintain persistent expression of the newly transferred gene following in vivo gene therapy.