The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Construction and characterization of hexon-chimeric adenoviruses: specification of adenovirus serotype.
Publication Type
Academic Article
Authors
Gall J, Crystal R, Falck-Pedersen E
Journal
J Virol
Volume
72
Issue
12
Pagination
10260-4
Date Published
12/01/1998
ISSN
0022-538X
Keywords
Capsid, Capsid Proteins, Chimera, Mastadenovirus
Abstract
This study has used the strategy of gene replacement to characterize the contribution of the adenovirus (Ad) capsid protein hexon to serotype definition. By replacing the Ad type 5 (Ad5) hexon gene with sequences from Ad2, we have changed the type specificity of the chimeric virus. The type-determining epitopes are primarily associated with loop 1 of hexon and, to a much lesser degree, with loop 2. In spite of the serotype distinctiveness of the chimeric hexon viruses, epitope similarity between the vectors resulted in a low level of cross-reactive neutralizing antibody, which in combination with activated cellular and innate arms of the immune system is sufficient to suppress gene transduction following readministration in vivo.