Adenoviral gene transfer of stromal cell-derived factor-1 to murine tumors induces the accumulation of dendritic cells and suppresses tumor growth.
Publication Type | Academic Article |
Authors | Fushimi T, O'Connor T, Crystal R |
Journal | Cancer Res |
Volume | 66 |
Issue | 7 |
Pagination | 3513-22 |
Date Published | 04/01/2006 |
ISSN | 0008-5472 |
Keywords | Chemokines, CXC, Dendritic Cells, Neoplasms, Experimental |
Abstract | The human CXC chemokine, stromal cell-derived factor 1 (SDF-1alpha), is known to function in vitro as a chemotactic factor for lymphocytes, monocytes, and dendritic cells. In the context that dendritic cells are powerful antigen-presenting cells, we hypothesized that adenoviral gene transfer of SDF-1alpha to tumors might inhibit growth of preexisting tumors through attracting dendritic cells to the tumor. AdSDF-1alpha mediated the expression of SDF-1alpha mRNA and protein in A549 cells in vitro, and the supernatant of the AdSDF-1alpha-infected A549 cells showed chemotactic activity for dendritic cells. When syngeneic murine CT26 colon carcinoma tumors (BALB/c) and B16 melanoma and Lewis lung cell carcinoma (C57Bl/6) were injected with AdSDF-1alpha (5 x 10(8) plaque-forming units), there was an accumulation of dendritic cells and CD8(+) cells within the tumor and significant inhibition of tumor growth compared with tumors injected with PBS or AdNull (control vector). The injection of AdSDF-1alpha into tumors induced the inflammatory enlargement and the accumulation of dendritic cells in the draining lymph node. Intratumoral AdSDF-1alpha administration elicited tumor-specific CTLs and adoptive transfer of splenocytes from AdSDF-1alpha-treated mice resulted in the elongation of survival after tumor challenge. Interestingly, in wild-type and CD4(-/-) mice but not in CD8(-/-) mice, AdSDF-1alpha inhibited the growth of the tumor. These observations suggest that adenoviral gene transfer of SDF-1alpha may be a useful strategy to accumulate dendritic cells in tumors and evoke antitumor immune responses to inhibit tumor growth. |
DOI | 10.1158/0008-5472.CAN-05-1493 |
PubMed ID | 16585175 |