About Us
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
Publication Type | Academic Article |
Authors | Merritt R, Yamada R, Crystal R, Korst R |
Journal | J Thorac Cardiovasc Surg |
Volume | 127 |
Issue | 2 |
Pagination | 355-64 |
Date Published | 02/01/2004 |
ISSN | 0022-5223 |
Keywords | Carcinoma, Lewis Lung, Genes, MHC Class I, Immunotherapy, Active, Lung Neoplasms |
Abstract | OBJECTIVE: Tumors down-regulate major histocompatibility complex class I expression, escaping recognition by the cellular immune response. We hypothesized that augmentation of tumor cell class I expression by interferon-gamma would enhance the cellular antitumor immune response and cure rate of an active immunotherapy strategy. METHODS: B16.F10 tumor cells were exposed to interferon-gamma in culture, and class I expression was quantified using flow cytometry. Syngeneic mice bearing established tumors were injected with interferon-gamma (5000 U, intraperitoneal), and class I expression was assessed using immunohistochemistry. Tumor-specific cytotoxic T lymphocytes were induced in mice by an intratumoral injection of AdCD40L (5 x 10(10) particles), an adenovirus gene transfer vector-based immunotherapy strategy previously demonstrated to augment cellular antitumor immunity. A conjugate-formation assay and the enzyme-linked immunospot assay were used to evaluate the binding and activation of cytotoxic T lymphocytes, respectively. Interferon-gamma was administered to tumor-bearing mice concomitantly with intratumoral AdCD40L. End points measured included the frequencies of cytotoxic T lymphocytes using the enzyme-linked immunospot assay, tumor size, and mouse survival. The role of class I expression was further evaluated by monoclonal antibody blockade in both in vitro and in vivo experiments. RESULTS: B16.F10 cells exposed to interferon-gamma expressed significantly more class I, both in vitro and in vivo, and were able to bind to and activate cytotoxic T lymphocytes more efficiently than untreated cells. Cytotoxic T-lymphocyte frequencies, tumor regression, and the cure rate induced by AdCD40L were augmented by the addition of a single dose of interferon-gamma in tumor-bearing mice. These in vitro and in vivo effects of interferon-gamma were attenuated by class I monoclonal antibody blockade. CONCLUSIONS: Up-regulation of class I expression using interferon-gamma enhances the cellular antitumor immune response and cure rate of AdCD40L, an active immunotherapy strategy. This approach may be useful for human tumors that lack class I expression. |
DOI | 10.1016/j.jtcvs.2003.09.007 |
PubMed ID | 14762342 |