About Us
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
Publication Type | Academic Article |
Authors | Chazen J, Sarva H, Stieg P, Min R, Ballon D, Pryor K, Riegelhaupt P, Kaplitt M |
Journal | J Neurosurg |
Volume | 129 |
Issue | 2 |
Pagination | 315-323 |
Date Published | 10/20/2017 |
ISSN | 1933-0693 |
Keywords | Diffusion Tensor Imaging, Essential Tremor, Neuroimaging, Surgery, Computer-Assisted, Thalamus, Ultrasonography, Interventional |
Abstract | OBJECTIVE The objective of this study was to evaluate the utility of diffusion tensor imaging (DTI) tractography-based targeting of the dentatorubrothalamic tract (DRT) for magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy in patients with essential tremor (ET) and correlate postprocedural tract disruption with clinical outcomes. METHODS Four patients received preprocedural and immediate postprocedural DTI in addition to traditional anatomical MRI sequences for MRgFUS thalamotomy. Optimal ablation sites were selected based on the patient-specific location of the DRT as demonstrated by DTI (direct targeting) and correlated with traditional atlas-based measurements for thalamic ventral intermediate nucleus (Vim) lesioning (indirect targeting). Fiber tracts were displayed three-dimensionally during the procedure and used in conjunction with clinical signs of tremor control for fine correction of the ablation site. Immediately following the conclusion of the procedure, the MRgFUS head frame was removed and patients were placed in a 32-channel MRI head coil for follow-up DTI and anatomical MRI sequences. RESULTS All patients had excellent postoperative tremor control and successful pre- and postprocedural DTI fiber tracking of the corticospinal tract, medial lemniscus, and DRT. Immediate postprocedure DTI failed to track the DRT ipsilateral to the lesion site with a preserved contralateral DRT, coincident with substantial resolution of contralateral tremor. CONCLUSIONS DTI can reliably identify the optimal ablation target and demonstrates tract disruption on immediate postprocedural imaging. A clinical improvement of ET was observed immediately following the procedure, correlating with DRT disruption and suggesting that interruption of the DRT is a consequence of clinically successful MRgFUS thalamotomy. These findings may have utility for both MRgFUS procedure planning in surgically naive patients and retreatment of patients who have previously undergone unsuccessful thalamic Vim lesioning. |
DOI | 10.3171/2017.4.JNS162803 |
PubMed ID | 29053074 |