The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Differences in hydrogen exchange behavior between the oxidized and reduced forms of Escherichia coli thioredoxin.
Publication Type
Academic Article
Authors
Kaminsky S, Richards F
Journal
Protein Sci
Volume
1
Issue
1
Pagination
10-21
Date Published
01/01/1992
ISSN
0961-8368
Keywords
Escherichia coli, Thioredoxins
Abstract
Amide proton exchange of thioredoxin is used to monitor the structural effects of reduction of its single disulfide. An effective 3-5-proton difference between the oxidized and reduced protein form is observed early in proton out-exchange of the whole protein, which is independent of temperature in the range of 5-45 degrees C, indicating that redox-sensitive changes are probably not due to low-energy structural fluctuations. Medium resolution hydrogen exchange experiments have localized the redox-sensitive amide protons to two parts of the sequence that are distant from each other in the three-dimensional structure: the active-site turn and the first beta-strand. The sum of the proton differences observed in the peptides from these regions is equal to that of the whole protein, indicating that all redox-sensitive hydrogen exchange effects are observed in the peptide experiments. A model combining structural changes within the protein matrix with changes in the surface hydration properties is proposed as a mechanism for the communication between distant sites within the protein. Sound velocity and density measurements of reduced and oxidized thioredoxin are presented in the accompanying paper (Kaminsky, S.M. & Richards, F.M., 1992, Protein Sci. 1, 22-30).