The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
alpha 1-antitrypsin (alpha 1AT) deficiency is an inherited disorder almost always associated with the development of panacinar emphysema in the fourth to fifth decades. One source of alpha 1AT for chronic replacement therapy of such individuals is that produced by E.coli directed by a cDNA coding for the human alpha 1AT molecule. Using TG1(E.coli), an alpha 1AT molecule produced by E.coli transformed with the plasmid-expressing vector pTG922, the present study shows that recombinant DNA-directed E.coli-produced alpha 1AT is as an effective inhibitor of neutrophil elastase as alpha 1AT purified from plasma. Importantly, TG1(E.coli) inhibited human neutrophil elastase with an association rate constant of 1.3 +/- 0.4X10(7) M-1 sec-1, similar to that of normal plasma alpha 1AT (1.1 +/- 0.1, p greater than 0.2). Furthermore, when TG1(E.coli) was added to alpha 1AT-deficient plasma obtained from homozygous alpha 1AT type Z individuals, the TG1(E.coli) remained functional and augmented the anti-neutrophil elastase activity of the serum proportional to the amount of TG1(E.coli) added. These observations suggest that if sufficient amounts of recombinant DNA methodology-produced alpha 1AT molecules could be safely delivered to the alveolar structures of alpha 1AT-deficient individuals, they would function to protect the alveolar walls from elastolytic attack.