The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Fouret P, du Bois R, Bernaudin J, Takahashi H, Ferrans V, Crystal R
Journal
J Exp Med
Volume
169
Issue
3
Pagination
833-45
Date Published
03/01/1989
ISSN
0022-1007
Keywords
Bone Marrow Cells, Neutrophils, Pancreatic Elastase
Abstract
Neutrophil elastase, a potent serine protease carried and released by activated neutrophils, is not synthesized by neutrophils, but by their bone marrow precursor cells. Using in situ hybridization with 35S-labeled antisense and sense neutrophil elastase cRNA probes, the present study demonstrates that expression of the neutrophil elastase gene is tightly controlled in bone marrow precursors and occurs during a very limited stage of differentiation of the neutrophil myeloid series, almost entirely at the promyelocyte stage. Neutrophil elastase mRNA transcript levels are detectable to a limited extent in blasts, increase markedly in the promyelocyte stage, and then disappear as promyelocytes further differentiate. Control probes specific for myeloperoxidase, lactoferrin, and beta-globin mRNA transcripts, respectively, demonstrated contrasting gene expression. Myeloperoxidase mRNA transcripts were also found almost exclusively at the promyelocyte stage, but myeloperoxidase mRNA levels disappeared earlier than do neutrophil elastase mRNA levels, suggesting that expression of these genes may be differently controlled. In comparison, lactoferrin mRNA transcripts were detected late in the neutrophil lineage, while beta-globin mRNA was detected only in cells of the erythroid lineage. Together these observations suggest that the expression of the neutrophil elastase gene is likely under very tight control, and is likely different than that for other constituents of the neutrophil granules.