About Us
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
Publication Type | Academic Article |
Authors | Chu C, Trapnell B, Curristin S, Cutting G, Crystal R |
Journal | J Clin Invest |
Volume | 90 |
Issue | 3 |
Pagination | 785-90 |
Date Published | 09/01/1992 |
ISSN | 0021-9738 |
Keywords | Bronchi, Chromosome Deletion, Cystic Fibrosis, Membrane Proteins, RNA, Messenger |
Abstract | Cystic fibrosis (CF) is a recessive hereditary disorder, requiring both parental cystic fibrosis conductance transmembrane regulator (CFTR) genes to carry mutations for clinical disease to manifest, i.e., only 50% of normal CFTR gene expression is required to maintain a normal phenotype. To help define the minimum amount of normal CFTR gene expression necessary to maintain normalcy, we have capitalized on our prior observation (Chu, C.-S., B. C. Trapnell, J. J. Murtagh, Jr., J. Moss, W. Dalemans, S. Jallat, A. Mercenier, A. Pavirani, J.-P. Lecocq, G. R. Cutting, et al. 1991. EMBO [Eur. Mol. Biol. Organ] J. 10:1355-1363) that normal individuals can have up to 66% of bronchial CFTR mRNA transcripts that are missing exon 9, a region representing 21% of the sequence coding for the critical nucleotide (ATP)-binding fold 1 (NBF1) of the predicted CFTR protein. The study population included 78 individuals with no prior diagnosis of CF. Evaluation of bronchial epithelial cells (obtained by bronchoscopy) revealed that exon 9 was variably deleted in all individuals. Remarkably, there were four individuals, all greater than or equal to 35 yr, in whom bronchial epithelial cells exhibited 73, 89, 90, and 92% CFTR transcripts with inframe deletion of exon 9, respectively, despite normal sweat Cl- and no clinical manifestation of CF. In the context that only 8% or less of bronchial CFTR transcripts need exon 9 to maintain normal airway function, these observations strongly suggest that either exon 9 is not necessary for CFTR structure and/or function or that only a very small fraction of bronchial epithelial cells need to express normal CFTR mRNA transcripts with exon 9 to perform the function of CFTR sufficient to maintain a normal phenotype in vivo. |
DOI | 10.1172/JCI115952 |
PubMed ID | 1381723 |
PubMed Central ID | PMC329931 |