The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Cystic fibrosis is characterized by deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) transporter. The packaging constraints of adeno-associated viral (AAV) vectors preclude delivery of both an active promoter and CFTR cDNA to target cells. We hypothesized that segmental trans-splicing, in which two AAV vectors deliver the 5' and 3' halves of the CFTR cDNA, could mediate splicing of two pre-mRNAs into a full-length, functional CFTR mRNA. Using a segmental trans-splicing 5' donor-3' acceptor pair that split the CFTR cDNA between exons 14a and 14b, cotransfection of donor and acceptor plasmids into CFTR(-) cells resulted in full-length CFTR message and protein. Microinjection of plasmids into CFTR(-) cells produced cAMP-activated Cl(-) conductance. Vectors created with an engineered human serotype, AAV6.2, were used to deliver CFTR donor and acceptor constructs, resulting in full-length CFTR mRNA and protein as well as cAMP-activated Cl(-) conductance in CFTR(-) cells, including human CF airway epithelial IB3-1 cells. Thus, segmental trans-splicing can be used with AAV vectors to mediate expression of CFTR, a strategy potentially applicable to individuals with CF.