The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Identification of a second mutation in the protein-coding sequence of the Z type alpha 1-antitrypsin gene.
Publication Type
Academic Article
Authors
Nukiwa T, Satoh K, Brantly M, Ogushi F, Fells G, Courtney M, Crystal R
Journal
J Biol Chem
Volume
261
Issue
34
Pagination
15989-94
Date Published
12/05/1986
ISSN
0021-9258
Keywords
Mutation, alpha 1-Antitrypsin
Abstract
This study reports the entire nucleotide sequence of the protein coding region sequence of the alpha 1-antitrypsin (alpha 1AT) Z gene, a common form of the alpha 1AT gene associated with serum alpha 1AT deficiency. In addition to Glu342 to Lys342 mutation in exon V which has been previously identified by peptide analysis, another point mutation (GTG to GCG in exon III) in the gene sequence predicts a second amino acid substitution (Val213 to Ala213) in the Z protein. This Val213 to Ala213 mutation was confirmed to be a general finding in Z type alpha 1AT gene by evaluating genomic DNA from 40 Z haplotypes using synthetic oligonucleotide gene probes directed toward the mutated exon III sequences in the Z gene. Furthermore, the exon III Val213 to Ala213 mutation eliminates a BstEII restriction endonuclease site in the alpha 1AT Z gene, allowing rapid identification of this Val213 to Ala213 substitution at the genomic DNA level. Surprisingly, when genomic DNA samples from individuals thought to be homozygous for the M1 gene (the most common alpha 1AT normal haplotype) were evaluated with BstEII, 23% of the M1 haplotypes were BstEII site negative, thus identifying a new form of M1 (i.e. M1(Ala213], likely identical to M1 but with an isoelectric focusing "silent" amino acid substitution (Val213 to Ala213). Although the relative importance of the newly identified exon III Val213 to Ala213 mutation to the pathogenesis of the abnormalities associated with the Z gene is not known, it is likely that M1(Ala213) gene represents a common "normal" polymorphism of the alpha 1AT gene that served as an evolutionary intermediate between the M1(Val213) and Z genes.