The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Omberg L, Salit J, Hackett N, Fuller J, Matthew R, Chouchane L, Rodriguez-Flores J, Bustamante C, Crystal R, Mezey J
Journal
BMC Genet
Volume
13
Pagination
49
Date Published
06/26/2012
ISSN
1471-2156
Keywords
Genetics, Population, Genome, Human
Abstract
BACKGROUND: Populations of the Arabian Peninsula have a complex genetic structure that reflects waves of migrations including the earliest human migrations from Africa and eastern Asia, migrations along ancient civilization trading routes and colonization history of recent centuries. RESULTS: Here, we present a study of genome-wide admixture in this region, using 156 genotyped individuals from Qatar, a country located at the crossroads of these migration patterns. Since haplotypes of these individuals could have originated from many different populations across the world, we have developed a machine learning method "SupportMix" to infer loci-specific genomic ancestry when simultaneously analyzing many possible ancestral populations. Simulations show that SupportMix is not only more accurate than other popular admixture discovery tools but is the first admixture inference method that can efficiently scale for simultaneous analysis of 50-100 putative ancestral populations while being independent of prior demographic information. CONCLUSIONS: By simultaneously using the 55 world populations from the Human Genome Diversity Panel, SupportMix was able to extract the fine-scale ancestry of the Qatar population, providing many new observations concerning the ancestry of the region. For example, as well as recapitulating the three major sub-populations in Qatar, composed of mainly Arabic, Persian, and African ancestry, SupportMix additionally identifies the specific ancestry of the Persian group to populations sampled in Greater Persia rather than from China and the ancestry of the African group to sub-Saharan origin and not Southern African Bantu origin as previously thought.