The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Chronic obstructive pulmonary disease (COPD), a major smoking-associated lung disorder characterized by progressive irreversible airflow limitation, affects >200 million people worldwide. Individuals with COPD have increased susceptibility to respiratory infections, resulting in exacerbations of the disease. A growing body of evidence indicates that multiple host defense mechanisms, such as those provided by the airway epithelial barrier and innate immune cells, including alveolar macrophages, neutrophils, dendritic cells and natural killer cells, are broadly suppressed in COPD in a smoking-dependent manner. Inactivation of the innate immune system observed in COPD smokers is remarkably similar to the immunosenescence phenotype associated with aging. As a consequence of defective innate immune defense, the lungs of COPD smokers are frequently colonized with pathogens and commonly develop bacterial and viral infections, which cause secondary inflammation, a major driver of the disease progression. In this review, we summarize the evidence from human studies related to disordering of the innate immune system in COPD, discuss possible relationships between those changes and aging, and provide insights into potential therapeutic strategies aimed at the prevention of COPD progression via normalization of the disordered innate immune mechanisms.