The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Interleukin-8 gene expression in human bronchial epithelial cells.
Publication Type
Academic Article
Authors
Nakamura H, Yoshimura K, Jaffe H, Crystal R
Journal
J Biol Chem
Volume
266
Issue
29
Pagination
19611-7
Date Published
10/15/1991
ISSN
0021-9258
Keywords
Bronchi, Interleukin-8
Abstract
The capacity of cells of the human bronchial epithelium to express the gene for interleukin-8 (IL-8) was evaluated in bronchial epithelium derived cell lines, HS-24 and BET-1A, using tumor necrosis factor-alpha (TNF) as a model inflammatory stimulus. As in other epithelium, TNF markedly increased the level of the 1.8-kilobase IL-8 mRNA transcripts in both bronchial epithelial cell lines. In HS-24 cells, nuclear run-on analyses showed the IL-8 gene transcription rate was dramatically increased, more than 30-fold, after TNF stimulation. The half-life of IL-8 mRNA transcripts in these cells was approximately 40 min and did not change after TNF stimulation, suggesting that TNF up-regulated IL-8 gene expression mainly at the transcriptional level. DNase I hypersensitivity site mapping of chromatin DNA in resting HS-24 cells demonstrated two hypersensitivity sites within 400 base pairs (bp) 5' to exon I and one site within exon I. However, after TNF stimulation, the exon I hypersensitivity site disappeared and a new site approximately 120 bp 5' to exon I emerged. Consistent with these observations, transfection studies with HS-24 cells using fusion genes composed of the 5'-flanking sequences of the IL-8 gene and a luciferase reporter gene demonstrated potent promoter activity in a 174-bp segment (-130 to +44 relative to the transcription start site), which also exhibited a response to TNF, while a segment from -112 to +44 showed very low promoter activity and no response to TNF. Thus, human bronchial epithelial cells can express the IL-8 gene, with expression in response to the inflammatory mediator TNF regulated mainly at the transcriptional level, and with elements within the 5'-flanking region of the gene that are directly or indirectly modulated by the TNF signal.