Publication Type Academic Article
Authors Birrer P, McElvaney N, Gillissen A, Hoyt R, Bloedow D, Hubbard R, Crystal R
Journal J Appl Physiol (1985)
Volume 73
Issue 1
Pagination 317-23
Date Published 07/01/1992
ISSN 8750-7587
Keywords Neutrophils, Pancreatic Elastase, Proteins, Serine Proteinase Inhibitors
Abstract Secretory leukoprotease inhibitor (SLPI), a 12-kDa serine antiprotease, normally protects the upper airway epithelial surface from attack by neutrophil elastase (NE). In the context that a variety of inflammatory lung diseases are characterized by large neutrophil burdens with resultant high levels of NE in the lung, recombinant SLPI (rSLPI), a molecule identical to natural SLPI, may be an effective means to augment the anti-NE protective screen of the lung. To determine whether intravenous rSLPI will augment respiratory tract and epithelial surface levels of SLPI and anti-NE capacity, rSLPI was administered intravenously to sheep and SLPI levels were quantified in plasma, lung lymph (as a measure of lung interstitial levels), lung epithelial lining fluid (ELF), and urine. rSLPI (1 g) was administered over 10 min, and after 30 min plasma levels of SLPI were 8 microM and decreased with a half-life of 1.8 h. Lymph SLPI levels paralleled the plasma levels: 4 h after infusion the lymph-to-plasma ratio was 0.8. ELF SLPI levels paralleled the lymph levels: 4 h after infusion the ELF-to-lymph ratio was 0.3. Western analysis demonstrated intact SLPI in lymph and ELF, and functional analysis showed increases in lymph and ELF anti-NE capacity that paralleled the levels of SLPI. As might be expected from a protein with a molecular mass of 12 kDa, urine excretion was high, with 20% of the SLPI excreted over 5 h. However, if the rate of infusion was slowed, SLPI excretion decreased significantly, with a 3-h infusion associated with 9% excretion and a 12-h infusion associated with less than 0.2% excretion.(ABSTRACT TRUNCATED AT 250 WORDS)
DOI 10.1152/jappl.1992.73.1.317
PubMed ID 1354669
Back to Top