Publication Type Academic Article
Authors O'Bryan L, Pinkston P, Kumaraswami V, Vijayan V, Yenokida G, Rosenberg H, Crystal R, Ottesen E, Nutman T
Journal Infect Immun
Volume 71
Issue 3
Pagination 1337-42
Date Published 03/01/2003
ISSN 0019-9567
Keywords Cell Degranulation, Eosinophils, Pulmonary Eosinophilia
Abstract To explore the mechanisms underlying the eosinophil-mediated inflammation of tropical pulmonary eosinophilia (TPE), bronchoalveolar lavage (BAL) fluid, serum, and supernatants from pulmonary and blood leukocytes (WBC) from patients with acute TPE (n = 6) were compared with those obtained from healthy uninfected individuals (n = 4) and from patients with asthma (n = 4) or elephantiasis (n = 5). Although there were no significant differences in the levels of interleukin-4 (IL-4), IL-5, IL-13, eotaxin, granulocyte-macrophage colony-stimulating factor, RANTES, or eosinophil cationic protein, there was a marked increase in eosinophil-derived neurotoxin (EDN) both systemically and in the lungs of individuals with TPE compared to each of the control groups (P < 0.02). Moreover, there was a compartmentalization of this response, with EDN levels being higher in the BAL fluid than in the serum (P < 0.02). Supernatants from WBC from either whole blood or BAL cells were examined for chemokines, cytokines, eosinophil degranulation products, and arachidonic acid metabolites. Of the many mediators examined-particularly those associated with eosinophil trafficking-only EDN (in BAL fluid and WBC) and MIP-1alpha (in WBC) levels were higher for TPE patients than for the non-TPE control groups (P < 0.02). These data suggest it is the eosinophilic granular protein EDN, an RNase capable of damaging the lung epithelium, that plays the most important role in the pathogenesis of TPE.
DOI 10.1128/IAI.71.3.1337-1342.2003
PubMed ID 12595450
PubMed Central ID PMC148813
Back to Top