The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Molecular basis of alpha-1-antitrypsin deficiency.
Publication Type
Review
Authors
Brantly M, Nukiwa T, Crystal R
Journal
Am J Med
Volume
84
Issue
6A
Pagination
13-31
Date Published
06/24/1988
ISSN
0002-9343
Keywords
alpha 1-Antitrypsin Deficiency
Abstract
Alpha-1-antitrypsin (A1AT) deficiency is an autosomal hereditary disorder associated with a major reduction in serum A1AT levels. Clinically, A1AT deficiency is associated with emphysema in adults and, less commonly, liver disease in neonates. A1AT is a 52-kDa, 394-amino acid, single-chain glycoprotein normally present in serum at 150 to 350 mg/dl. The A1AT gene, composed of seven exons dispersed over 12 kb of chromosomal segment 14q31-32.3, is expressed in hepatocytes and mononuclear phagocytes. The A1AT protein, a member of the class of protease inhibitor proteins known as serpins (serine protease inhibitors), is a globular molecule composed of nine alpha-helices and three beta-pleated sheets. The major function of A1AT is to inhibit neutrophil elastase; A1AT does so through an active site centered around Met358 contained within an external stressed loop on the surface of the molecule. A1AT is a highly pleomorphic protein with greater than 75 variants determined at the protein and/or gene level. These variants can be categorized into four groups according to their serum A1AT level and function: normal, deficient, dysfunctional, and absent. There are two important salt bridges within the A1AT molecule (Glu342-Lys290; Glu263-Lys387); a mutation in the A1AT gene causing disruption of either salt bridge causes distinct molecular pathology resulting in reduced serum A1AT levels. Clinically relevant variants can be distinguished by a combination of isoelectric focusing of serum, restriction fragment length analysis of genomic DNA, oligonucleotide probes, and direct sequencing of the variant A1AT genes.