About Us
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
Publication Type | Academic Article |
Authors | Hubbard R, Fells G, Gadek J, Pacholok S, Humes J, Crystal R |
Journal | J Clin Invest |
Volume | 88 |
Issue | 3 |
Pagination | 891-7 |
Date Published | 09/01/1991 |
ISSN | 0021-9738 |
Keywords | Leukotriene B4, Lung, Macrophages, Neutrophils, Pulmonary Alveoli, alpha 1-Antitrypsin Deficiency |
Abstract | The emphysema of alpha 1-antitrypsin (alpha 1AT) deficiency is conceptualized to result from insufficient alpha 1AT allowing neutrophil elastase to destroy lung parenchyma. In addition to the deficiency of alpha 1AT in these individuals resulting from mutations in the alpha 1AT gene, it is recognized that, for unknown reasons, there are also increased numbers of neutrophils in their lungs compared with normal individuals. With the knowledge that alveolar macrophages have surface receptors for neutrophil elastase, we hypothesized that the neutrophil accumulation in the lower respiratory tract in alpha 1AT deficiency may result, in part, from release of neutrophil chemotactic activity by alveolar macrophages as they bind uninhibited neutrophil elastase. Consistent with this hypothesis, alpha 1AT-deficient alveolar macrophages spontaneously released nearly threefold more neutrophil chemotactic activity than normal alveolar macrophages. Analysis of alpha 1AT-deficient macrophage supernates by reverse-phase HPLC, molecular sieve chromatography, radioimmunoassay, and absorption with anti-LTB4 antibody revealed that the majority of the chemotactic activity was leukotriene B4 (LTB4), a mediator absent from normal macrophage supernates. Consistent with this hypothesis, incubation of normal macrophages with human neutrophil elastase resulted in the release of the same neutrophil chemotactic mediator. Furthermore, purified human alpha 1AT was able to prevent the neutrophil elastase from stimulating the macrophages to release the chemotactic factor. Together, these findings suggest that the absence of a normal antineutrophil elastase screen in the lower respiratory tract permits free neutrophil elastase to bind to alveolar macrophages, resulting in the release of LTB4, a process which attracts neutrophils to the alveoli of alpha 1AT deficient individuals, thus accelerating the lung destruction that characterizes this disorder. |
DOI | 10.1172/JCI115391 |
PubMed ID | 1653278 |
PubMed Central ID | PMC295476 |