The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Quantifying cerebrospinal fluid dynamics: A review of human neuroimaging contributions to CSF physiology and neurodegenerative disease.
Publication Type
Review
Authors
Mehta N, Suss R, Dyke J, Theise N, Chiang G, Strauss S, Saint-Louis L, Li Y, Pahlajani S, Babaria V, Glodzik L, Carare R, de Leon M
Journal
Neurobiol Dis
Volume
170
Pagination
105776
Date Published
05/25/2022
ISSN
1095-953X
Keywords
Alzheimer Disease, Neurodegenerative Diseases
Abstract
Cerebrospinal fluid (CSF), predominantly produced in the ventricles and circulating throughout the brain and spinal cord, is a key protective mechanism of the central nervous system (CNS). Physical cushioning, nutrient delivery, metabolic waste, including protein clearance, are key functions of the CSF in humans. CSF volume and flow dynamics regulate intracranial pressure and are fundamental to diagnosing disorders including normal pressure hydrocephalus, intracranial hypotension, CSF leaks, and possibly Alzheimer's disease (AD). The ability of CSF to clear normal and pathological proteins, such as amyloid-beta (Aβ), tau, alpha synuclein and others, implicates it production, circulation, and composition, in many neuropathologies. Several neuroimaging modalities have been developed to probe CSF fluid dynamics and better relate CSF volume and flow to anatomy and clinical conditions. Approaches include 2-photon microscopic techniques, MRI (tracer-based, gadolinium contrast, endogenous phase-contrast), and dynamic positron emission tomography (PET) using existing approved radiotracers. Here, we discuss CSF flow neuroimaging, from animal models to recent clinical-research advances, summarizing current endeavors to quantify and map CSF flow with implications towards pathophysiology, new biomarkers, and treatments of neurological diseases.