About Us
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
Publication Type | Academic Article |
Authors | Kong H, Hecht D, Song W, Kovesdi I, Hackett N, Yayon A, Crystal R |
Journal | Hum Gene Ther |
Volume | 9 |
Issue | 6 |
Pagination | 823-33 |
Date Published | 04/10/1998 |
ISSN | 1043-0342 |
Keywords | Genetic Therapy, Neoplasms, Experimental, Neovascularization, Pathologic, Proto-Oncogene Proteins, Receptor Protein-Tyrosine Kinases |
Abstract | Vascular endothelial growth factor (VEGF), a potent angiogenic mediator, is overexpressed in most solid tumors. On the basis of the knowledge that solid tumor growth beyond a small volume is critically dependent on angiogenesis, and that adenovirus (Ad) vectors can mediate efficient in vivo gene transfer and expression, we hypothesized that Ad-mediated transfer of a secreted form of the extracellular domain of the flt-1 VEGF receptor (Adsflt) would suppress tumor growth on a regional basis. To evaluate this concept, three tumor models were examined using a murine colon carcinoma cell line and syngeneic BALB/c mice. First, mice with preestablished splenic CT26.CL25 tumors and liver metastases were given Adsflt on AdNull intravenously and, after 15 days, spleens and livers were harvested to quantify tumor burden. Adslft-treated animals had minimal residual splenic tumors and liver metastases; in contrast, control animals had bulky splenic tumors and extensive liver metastases (p < 0.003). Second, mice with preestablished lung metastases showed a significant reduction in pulmonary metastases with regionally administered Adslft (intratracheal, p < 0.02) but not when the vector was systemically administered (intravenous, p > 0.9). Finally, mice with primary subcutaneous tumors treated with intratumoral administration of Adslft showed significant tumor suppression (p < 0.05) not observed in AdNull-treated mice or mice given Adslft intravenously (p > 0.3). We conclude that Ad-mediated in vivo regional delivery of a secreted form of the extracellular domain of the flt-1 VEGF receptor can effectively inhibit regional tumor growth, a strategy that may provide a means to control tumor growth within the treated organ without the risk of systemic antiangiogenesis. |
DOI | 10.1089/hum.1998.9.6-823 |
PubMed ID | 9581905 |