The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
To evaluate the concept that transfer of the human carboxylesterase (CE) gene will overcome the drug resistance of a solid tumor to CPT-11 (irinotecan), we used an adenovirus vector (AdCMV.CE) carrying human CE cDNA to infect CPT-11-resistant A549 human adenocarcinoma cells (A549/CPT) in vitro and in vivo and evaluated cell growth over time. The A549/CPT cells, selected by stepwise and continuous exposure of parental A549 cells to CPT-11 over 10 months, had a 6-fold resistance to CPT-11 and 42% CE activity in comparison with parental A549 cells. AdCMV.CE infection resulted in an increase in functional CE protein in resistant cells in vitro that was sufficient to convert CPT-11 to its active metabolite, SN-38, and effectively suppressed resistant cell growth in vitro in the presence of CPT-11. When AdCMV.CE was directly injected into established s.c. resistant A549-based tumors in nude mice receiving CPT-11, there was a 1.8-fold reduction in tumor size at day 20 compared to that of controls (P < 0.05). These observations suggest that adenovirus-mediated gene transfer of the human CE gene and concomitant administration of CPT-11 may have potential as a strategy for local control of acquired CPT-11 resistance of solid tumors.