Publication Type Academic Article
Authors Jett S, Dyke J, Andy C, Schelbaum E, Jang G, Boneu Yepez C, Pahlajani S, Diaz I, Diaz Brinton R, Mosconi L
Journal Sci Rep
Volume 12
Issue 1
Pagination 22087
Date Published 12/21/2022
ISSN 2045-2322
Keywords Alzheimer Disease, Amyloid beta-Peptides
Abstract Increasing evidence implicates sex and endocrine aging effects on brain bioenergetic aging in the greater lifetime risk of Alzheimer's disease (AD) in women. We conducted 31Phosphorus Magnetic Resonance Spectroscopy (31P-MRS) to assess the impact of sex and menopause on brain high-energy phosphates [adenosine triphosphate (ATP), phosphocreatine (PCr), inorganic phosphate (Pi)] and membrane phospholipids [phosphomonoesters/phosphodiesters (PME/PDE)] in 216 midlife cognitively normal individuals at risk for AD, 80% female. Ninety-seven participants completed amyloid-beta (Aβ) 11C-PiB PET. Women exhibited higher ATP utilization than men in AD-vulnerable frontal, posterior cingulate, fusiform, medial and lateral temporal regions (p < 0.001). This profile was evident in frontal cortex at the pre-menopausal and peri-menopausal stage and extended to the other regions at the post-menopausal stage (p = 0.001). Results were significant after multi-variable adjustment for age, APOE-4 status, midlife health indicators, history of hysterectomy/oophorectomy, use of menopause hormonal therapy, and total intracranial volume. While associations between ATP/PCr and Aβ load were not significant, individuals with the highest Aβ load were post-menopausal and peri-menopausal women with ATP/PCr ratios in the higher end of the distribution. No differences in Pi/PCr, Pi/ATP or PME/PDE were detected. Outcomes are consistent with dynamic bioenergetic brain adaptations that are associated with female sex and endocrine aging.
DOI 10.1038/s41598-022-26573-5
PubMed ID 36543814
PubMed Central ID PMC9772209
Back to Top