The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
We have previously shown that in vivo genetic modification of tumors with an adenovirus (Ad) vector engineered to express CD40 ligand (AdmCD40L) induces tumor-specific CTLs and suppresses tumor growth in vivo. In the present study, we investigate the hypothesis that this treatment can be made more efficient with 10(2)-fold less Ad vector by also administering bone marrow-generated dendritic cells (DCs) to the tumor. Using AdmCD40L and the number of DCs that alone had no effect on tumor growth, the data show that the growth of CT26 (colon adenocarcinoma; H-2d) and B16 (melanoma; H-2b) murine s.c. tumors is significantly suppressed by direct administration of DCs into s.c. established tumors that had been pretreated with AdmCD40L 2 days previously. The antitumor effect produced by the combination therapy AdmCD40L + DCs correlated with in vivo priming of tumor-specific CTLs. The antitumor cell-mediated immunity was transferable to naive mice by spleen cells from AdmCD40L + DC-treated animals. The interactions between CD40L and CD40 within treated tumors were critical because tumor suppression was abrogated by coadministration to the tumors of neutralizing monoclonal antibody against CD40L along with the DCs. Finally, in vivo depletion and knockout mice experiments demonstrated that tumor regression produced by this combination therapy depends on CD8+ T cells, but not on CD4+ T cells. These findings should be useful in designing strategies for use of DCs and AdmCD40L in cancer immunotherapy.