The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
Human bronchial epithelium is exquisitely sensitive to high O2 levels, with tracheobronchitis usually developing after 12 h of exposure to 100% O2. To evaluate whether this vulnerability results from inability of the bronchial epithelium to provide adequate antioxidant protection, we quantified antioxidant gene expression in bronchial epithelium of normal volunteers at baseline and after exposure to 100% O2 in vivo. After 14.8 +/- 0.2 h of 100% O2, 24 of 33 individuals had evidence of tracheobronchitis. Baseline gene expression of CuZn superoxide dismutase (SOD), MnSOD, and catalase in bronchial epithelium was very low (CuZnSOD 4.1 +/- 0.8 transcripts/cell, MnSOD 5.1 +/- 0.9, catalase 1.3 +/- 0.2), with control gamma-actin expression relatively abundant (50 +/- 6 transcripts/cell). Importantly, despite 100% O2 exposure sufficient to cause tracheobronchitis in most individuals, antioxidant mRNA transcripts/cell in bronchial epithelium did not increase (P > 0.5). Catalase activity in bronchial epithelium did not change after exposure to hyperoxia (P > 0.05). Total SOD activity increased mildly (P < 0.01) but not sufficiently to protect the epithelium. Together, the very low levels of expression of intracellular antioxidant enzymes and the inability to upregulate expression at the mRNA level with oxidant stress likely have a role in human airway epithelium susceptibility to hyperoxia.