About Us
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Belfer Gene Therapy Core Facility (BGTCF) is a cutting-edge genetic medicine research facility.
Publication Type | Academic Article |
Authors | Mahtabifard A, Merritt R, Yamada R, Crystal R, Korst R |
Journal | J Thorac Cardiovasc Surg |
Volume | 126 |
Issue | 1 |
Pagination | 28-38 |
Date Published | 07/01/2003 |
ISSN | 0022-5223 |
Keywords | Eye Proteins, Gene Transfer Techniques, Nerve Growth Factors, Proteins, Serpins, Thoracic Neoplasms |
Abstract | OBJECTIVE: Pigment epithelium-derived factor is known to be an inhibitor of angiogenesis. We hypothesized that in vivo gene transfer of pigment epithelium-derived factor may inhibit tumor angiogenesis and growth in syngeneic models of thoracic malignancies. METHODS: An adenovirus vector encoding the human pigment epithelium-derived factor cDNA (AdPEDF) was used to transduce human lung cancer cells in vitro. Transgene expression was assessed using Western analysis. Three different murine flank tumors (2 lung, 1 colon) were then established in syngeneic mice and treated intratumorally with phosphate-buffered saline, AdPEDF, or an empty vector (AdNull). Endpoints measured included transgene expression, tumor size, and animal survival, as well as microvessel density within the tumor. Additionally, a murine pulmonary metastasis model was established by intravenous injection of a syngeneic colon adenocarcinoma cell line expressing a marker gene (beta-galactosidase). One day later, treatment (phosphate-buffered saline, AdNull, or AdPEDF) was administered intrapleurally. Tumor burden (gross and histologic inspection, lung weight, and beta-galactosidase expression) was then evaluated 13 days after vector dosing, and survival was recorded. RESULTS: AdPEDF-derived expression of pigment epithelium-derived factor was demonstrated in vitro and in vivo. In syngeneic murine lung cancer flank tumors, intratumoral administration of AdPEDF significantly inhibited tumor growth (P <.01), prolonged mouse survival (P <.01), and decreased microvessel density (P <.01) compared with control groups. In the pulmonary metastasis model, AdPEDF-treated mice exhibited significantly reduced lung lesions, lung weight (P <.0005), beta-galactosidase expression (P <.05), and animal survival was prolonged (P <.05). CONCLUSION: Gene transfer of pigment epithelium-derived factor suppresses tumor vascularization and growth, while prolonging survival in syngeneic murine models of thoracic malignancies. |
DOI | 10.1016/s0022-5223(02)73616-7 |
PubMed ID | 12878936 |