The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
The Department of Genetic Medicine at Weill Cornell leads a dynamic and innovative translational research program, advancing diverse fields such as Genetic Therapy and Personalized Medicine.
Our translational research program aims to leverage our expertise in genetic therapies and personalized medicine to develop clinical solutions that target the molecular causes of human diseases.
The Department of Genetic Medicine advances treatments and diagnostics through diverse clinical trials, including drug testing and research to better understand diseases.
In vivo suppression of injury-induced vascular smooth muscle cell accumulation using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene.
Publication Type
Academic Article
Authors
Guzman R, Hirschowitz E, Brody S, Crystal R, Epstein S, Finkel T
Restenosis, a process characterized in part by excessive smooth muscle cell (SMC) proliferation in areas of vascular injury, occurs in up to 50% of patients undergoing balloon angioplasty. In an effort to develop a treatment strategy for restenosis, we constructed a replication-deficient recombinant adenovirus (AdMLP.HSTK) containing the herpes simplex virus thymidine kinase gene (HSV tk). This viral gene product phosphorylates the prodrug ganciclovir to form a nucleoside analog that inhibits DNA synthesis. Cultured primary rat SMCs infected with AdMLP.HSTK were completely growth-inhibited by incubation in ganciclovir-containing medium. In addition, when only a portion of the SMC population received the HSV tk transgene, an inhibitory effect on neighboring SMCs was evident. Evaluation of this strategy in vivo using a rat carotid balloon injury model demonstrated that local infection of injured arteries with AdMLP.-HSTK followed by 2 weeks of systemic ganciclovir treatment significantly (P < 0.01) reduced injury-induced SMC accumulation. In contrast, there was no suppression of injury-induced SMC accumulation in animals infected with AdMLP.HSTK but not receiving ganciclovir or in those animals infected with a control adenovirus and either treated or not treated with ganciclovir. These results demonstrate the potential utility of adenovirus-mediated gene transfer for treatment of restenosis after balloon injury.