In vivo suppression of injury-induced vascular smooth muscle cell accumulation using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene.

Publication Type Academic Article
Authors Guzman R, Hirschowitz E, Brody S, Crystal R, Epstein S, Finkel T
Journal Proc Natl Acad Sci U S A
Volume 91
Issue 22
Pagination 10732-6
Date Published 10/25/1994
ISSN 0027-8424
Keywords Aorta, Thoracic, Ganciclovir, Muscle, Smooth, Vascular, Simplexvirus, Thymidine Kinase
Abstract Restenosis, a process characterized in part by excessive smooth muscle cell (SMC) proliferation in areas of vascular injury, occurs in up to 50% of patients undergoing balloon angioplasty. In an effort to develop a treatment strategy for restenosis, we constructed a replication-deficient recombinant adenovirus (AdMLP.HSTK) containing the herpes simplex virus thymidine kinase gene (HSV tk). This viral gene product phosphorylates the prodrug ganciclovir to form a nucleoside analog that inhibits DNA synthesis. Cultured primary rat SMCs infected with AdMLP.HSTK were completely growth-inhibited by incubation in ganciclovir-containing medium. In addition, when only a portion of the SMC population received the HSV tk transgene, an inhibitory effect on neighboring SMCs was evident. Evaluation of this strategy in vivo using a rat carotid balloon injury model demonstrated that local infection of injured arteries with AdMLP.-HSTK followed by 2 weeks of systemic ganciclovir treatment significantly (P < 0.01) reduced injury-induced SMC accumulation. In contrast, there was no suppression of injury-induced SMC accumulation in animals infected with AdMLP.HSTK but not receiving ganciclovir or in those animals infected with a control adenovirus and either treated or not treated with ganciclovir. These results demonstrate the potential utility of adenovirus-mediated gene transfer for treatment of restenosis after balloon injury.
DOI 10.1073/pnas.91.22.10732
PubMed ID 7938020
PubMed Central ID PMC45096
Back to Top